Cargando…
Road Performance Investigation on Fiber-Reinforced Recycled Cement Base Material
The characteristics of the materials used in early buildings in China have led to a large proportion of discarded red bricks among the construction waste generated by demolishing abandoned buildings. The application of red brick aggregate with a particle size ≤5 mm and red brick powder with particle...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572254/ https://www.ncbi.nlm.nih.gov/pubmed/36236049 http://dx.doi.org/10.3390/polym14194102 |
_version_ | 1784810567255457792 |
---|---|
author | Ji, Yongcheng Ji, Wenhao Zhang, Ziyi Wang, Rui |
author_facet | Ji, Yongcheng Ji, Wenhao Zhang, Ziyi Wang, Rui |
author_sort | Ji, Yongcheng |
collection | PubMed |
description | The characteristics of the materials used in early buildings in China have led to a large proportion of discarded red bricks among the construction waste generated by demolishing abandoned buildings. The application of red brick aggregate with a particle size ≤5 mm and red brick powder with particle size 0.125~0.75 mm (referred to as recycled brick powder) was studied in this study after the crushing of waste red brick in road structures. The research results will provide a theoretical basis for the whole-grain recycling of waste red brick aggregate. The aggregate of red brick with a particle size smaller than 2 mm was mixed with different amounts of cement soil and fiber to prepare a cement-stable binder for the sub-base material. The recycled brick powder of 0.125~0.75 mm was used to replace the quartz sand with different substitution rates. As pavement materials, different amounts of fiber were used to prepare fiber-reinforced recycled-brick-powder cementitious composites. The optimal mixing ratio of the two materials was evaluated from the mechanical properties. The results showed that the optimal mixing ratio of the cement-stable binder was as follows: waste-red-brick-aggregate content was 50%, cement content was 4%, and fiber content was 0.2%. The optimum ratio of fiber-reinforced recycled-brick-powder cementitious composites was determined to be as follows: the replacement rate of recycled brick powder is 25%, and the content of PVA fiber is 1%. The regression analysis was used to fit the equations between the fiber content and the 7d unconfined compressive strength and the tensile strength of the cement-stabilized binder for different red-brick-aggregate admixtures at 4% cement content. A scanning electron microscope was used to observe the failure modes of the fiber. The influence of failure modes, such as pulling out, fracture, and plastic deformation, on the mechanical properties was expounded. |
format | Online Article Text |
id | pubmed-9572254 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95722542022-10-17 Road Performance Investigation on Fiber-Reinforced Recycled Cement Base Material Ji, Yongcheng Ji, Wenhao Zhang, Ziyi Wang, Rui Polymers (Basel) Article The characteristics of the materials used in early buildings in China have led to a large proportion of discarded red bricks among the construction waste generated by demolishing abandoned buildings. The application of red brick aggregate with a particle size ≤5 mm and red brick powder with particle size 0.125~0.75 mm (referred to as recycled brick powder) was studied in this study after the crushing of waste red brick in road structures. The research results will provide a theoretical basis for the whole-grain recycling of waste red brick aggregate. The aggregate of red brick with a particle size smaller than 2 mm was mixed with different amounts of cement soil and fiber to prepare a cement-stable binder for the sub-base material. The recycled brick powder of 0.125~0.75 mm was used to replace the quartz sand with different substitution rates. As pavement materials, different amounts of fiber were used to prepare fiber-reinforced recycled-brick-powder cementitious composites. The optimal mixing ratio of the two materials was evaluated from the mechanical properties. The results showed that the optimal mixing ratio of the cement-stable binder was as follows: waste-red-brick-aggregate content was 50%, cement content was 4%, and fiber content was 0.2%. The optimum ratio of fiber-reinforced recycled-brick-powder cementitious composites was determined to be as follows: the replacement rate of recycled brick powder is 25%, and the content of PVA fiber is 1%. The regression analysis was used to fit the equations between the fiber content and the 7d unconfined compressive strength and the tensile strength of the cement-stabilized binder for different red-brick-aggregate admixtures at 4% cement content. A scanning electron microscope was used to observe the failure modes of the fiber. The influence of failure modes, such as pulling out, fracture, and plastic deformation, on the mechanical properties was expounded. MDPI 2022-09-30 /pmc/articles/PMC9572254/ /pubmed/36236049 http://dx.doi.org/10.3390/polym14194102 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ji, Yongcheng Ji, Wenhao Zhang, Ziyi Wang, Rui Road Performance Investigation on Fiber-Reinforced Recycled Cement Base Material |
title | Road Performance Investigation on Fiber-Reinforced Recycled Cement Base Material |
title_full | Road Performance Investigation on Fiber-Reinforced Recycled Cement Base Material |
title_fullStr | Road Performance Investigation on Fiber-Reinforced Recycled Cement Base Material |
title_full_unstemmed | Road Performance Investigation on Fiber-Reinforced Recycled Cement Base Material |
title_short | Road Performance Investigation on Fiber-Reinforced Recycled Cement Base Material |
title_sort | road performance investigation on fiber-reinforced recycled cement base material |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572254/ https://www.ncbi.nlm.nih.gov/pubmed/36236049 http://dx.doi.org/10.3390/polym14194102 |
work_keys_str_mv | AT jiyongcheng roadperformanceinvestigationonfiberreinforcedrecycledcementbasematerial AT jiwenhao roadperformanceinvestigationonfiberreinforcedrecycledcementbasematerial AT zhangziyi roadperformanceinvestigationonfiberreinforcedrecycledcementbasematerial AT wangrui roadperformanceinvestigationonfiberreinforcedrecycledcementbasematerial |