Cargando…
Optimization of Micro-Texturing Process Parameters of TiAlN Coated Cutting Tools by Femtosecond Laser
Coated cemented carbide currently represents most of all cutting tool inserts due to its unique combination of wear resistance and toughness. Surface texturing technology can give additional performance to reduce the tool’s wear and energy consumption. Using TiAlN-coated cemented carbide tools as th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572267/ https://www.ncbi.nlm.nih.gov/pubmed/36233861 http://dx.doi.org/10.3390/ma15196519 |
_version_ | 1784810571021942784 |
---|---|
author | Wu, Xuefeng Zhan, Jinming Mei, Sanlin |
author_facet | Wu, Xuefeng Zhan, Jinming Mei, Sanlin |
author_sort | Wu, Xuefeng |
collection | PubMed |
description | Coated cemented carbide currently represents most of all cutting tool inserts due to its unique combination of wear resistance and toughness. Surface texturing technology can give additional performance to reduce the tool’s wear and energy consumption. Using TiAlN-coated cemented carbide tools as the research object, the effects of femtosecond laser parameters (laser energy, scanning speed, scanning times) on the groove morphology of TiAlN-coated tools and the bonding state of coating and substrate were discussed. The study found that when the laser energy was 10 μJ, the scanning speed was 0.7 mm/s, and the number of scans was 5, the groove morphology was ideal, and the coating and the substrate combination remained unchanged. The influence of micro-groove texture on the tool wear mechanism was investigated by cutting test using the micro-groove texture tool produced by this group of process parameters. The flank wear value of inserts with micro-grooved texture decreased significantly by around 25%. This work provides practical data to support the femtosecond laser processing of TiAlN-coated tools. It is helpful to understand further the processing mechanism of a femtosecond laser on the micro-texture of coated tools. |
format | Online Article Text |
id | pubmed-9572267 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95722672022-10-17 Optimization of Micro-Texturing Process Parameters of TiAlN Coated Cutting Tools by Femtosecond Laser Wu, Xuefeng Zhan, Jinming Mei, Sanlin Materials (Basel) Article Coated cemented carbide currently represents most of all cutting tool inserts due to its unique combination of wear resistance and toughness. Surface texturing technology can give additional performance to reduce the tool’s wear and energy consumption. Using TiAlN-coated cemented carbide tools as the research object, the effects of femtosecond laser parameters (laser energy, scanning speed, scanning times) on the groove morphology of TiAlN-coated tools and the bonding state of coating and substrate were discussed. The study found that when the laser energy was 10 μJ, the scanning speed was 0.7 mm/s, and the number of scans was 5, the groove morphology was ideal, and the coating and the substrate combination remained unchanged. The influence of micro-groove texture on the tool wear mechanism was investigated by cutting test using the micro-groove texture tool produced by this group of process parameters. The flank wear value of inserts with micro-grooved texture decreased significantly by around 25%. This work provides practical data to support the femtosecond laser processing of TiAlN-coated tools. It is helpful to understand further the processing mechanism of a femtosecond laser on the micro-texture of coated tools. MDPI 2022-09-20 /pmc/articles/PMC9572267/ /pubmed/36233861 http://dx.doi.org/10.3390/ma15196519 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wu, Xuefeng Zhan, Jinming Mei, Sanlin Optimization of Micro-Texturing Process Parameters of TiAlN Coated Cutting Tools by Femtosecond Laser |
title | Optimization of Micro-Texturing Process Parameters of TiAlN Coated Cutting Tools by Femtosecond Laser |
title_full | Optimization of Micro-Texturing Process Parameters of TiAlN Coated Cutting Tools by Femtosecond Laser |
title_fullStr | Optimization of Micro-Texturing Process Parameters of TiAlN Coated Cutting Tools by Femtosecond Laser |
title_full_unstemmed | Optimization of Micro-Texturing Process Parameters of TiAlN Coated Cutting Tools by Femtosecond Laser |
title_short | Optimization of Micro-Texturing Process Parameters of TiAlN Coated Cutting Tools by Femtosecond Laser |
title_sort | optimization of micro-texturing process parameters of tialn coated cutting tools by femtosecond laser |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572267/ https://www.ncbi.nlm.nih.gov/pubmed/36233861 http://dx.doi.org/10.3390/ma15196519 |
work_keys_str_mv | AT wuxuefeng optimizationofmicrotexturingprocessparametersoftialncoatedcuttingtoolsbyfemtosecondlaser AT zhanjinming optimizationofmicrotexturingprocessparametersoftialncoatedcuttingtoolsbyfemtosecondlaser AT meisanlin optimizationofmicrotexturingprocessparametersoftialncoatedcuttingtoolsbyfemtosecondlaser |