Cargando…
Day-Ahead Hourly Solar Irradiance Forecasting Based on Multi-Attributed Spatio-Temporal Graph Convolutional Network
Solar irradiance forecasting is fundamental and essential for commercializing solar energy generation by overcoming output variability. Accurate forecasting depends on historical solar irradiance data, correlations between various meteorological variables (e.g., wind speed, humidity, and cloudiness)...
Autores principales: | Jeon, Hyeon-Ju, Choi, Min-Woo, Lee, O-Joun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572285/ https://www.ncbi.nlm.nih.gov/pubmed/36236280 http://dx.doi.org/10.3390/s22197179 |
Ejemplares similares
-
ADSTGCN: A Dynamic Adaptive Deeper Spatio-Temporal Graph Convolutional Network for Multi-Step Traffic Forecasting
por: Cui, Zhengyan, et al.
Publicado: (2023) -
Graph Spatio-Temporal Networks for Manufacturing Sales Forecast and Prevention Policies in Pandemic Era
por: Lee, Chia-Yen, et al.
Publicado: (2023) -
Intra-hour irradiance forecasting techniques for solar power integration: a review
por: Chu, Yinghao, et al.
Publicado: (2021) -
Hourly forecasting of traffic flow rates using spatial temporal graph neural networks
por: Belt, Eline A., et al.
Publicado: (2023) -
A Spatio-Temporal Graph Convolutional Network Model for Internet of Medical Things (IoMT)
por: Ghosh, Dipon Kumar, et al.
Publicado: (2022)