Cargando…

Adaptive Load Forecasting Methodology Based on Generalized Additive Model with Automatic Variable Selection

For decentralized energy management in a smart grid, there is a need for electric load forecasting at different places in the grid hierarchy and for different levels of aggregation. Load forecasting functionality relies on the load time series prediction model, which provides accurate forecasts. Com...

Descripción completa

Detalles Bibliográficos
Autor principal: Krstonijević, Sovjetka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572323/
https://www.ncbi.nlm.nih.gov/pubmed/36236346
http://dx.doi.org/10.3390/s22197247
Descripción
Sumario:For decentralized energy management in a smart grid, there is a need for electric load forecasting at different places in the grid hierarchy and for different levels of aggregation. Load forecasting functionality relies on the load time series prediction model, which provides accurate forecasts. Complex and heterogeneous multi-source load time series in a smart grid require flexible modeling approaches to meet the accuracy demand. This work proposes an adaptive load forecasting methodology based on the generalized additive model (GAM) with the big data estimation method. It is based on a set of GAM terms, constructed for a specific multi-source load forecasting application in the grid and a procedure that dynamically selects the most relevant terms and generates forecasts for particular load time series. Data from publicly available New York Independent System Operator (NYISO) databases are used for testing. The 24-hour-ahead forecasting results for eleven New York City zones, of different sizes and types, indicate the applicability of the proposed methodology.