Cargando…
Adaptive Load Forecasting Methodology Based on Generalized Additive Model with Automatic Variable Selection
For decentralized energy management in a smart grid, there is a need for electric load forecasting at different places in the grid hierarchy and for different levels of aggregation. Load forecasting functionality relies on the load time series prediction model, which provides accurate forecasts. Com...
Autor principal: | Krstonijević, Sovjetka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572323/ https://www.ncbi.nlm.nih.gov/pubmed/36236346 http://dx.doi.org/10.3390/s22197247 |
Ejemplares similares
-
Forecasting methodology with structural auto-adaptive intelligent grey models
por: Sapnken, Flavian Emmanuel, et al.
Publicado: (2023) -
Forecasting Teleconsultation Demand Using an Ensemble CNN Attention-Based BILSTM Model with Additional Variables
por: Chen, Wenjia, et al.
Publicado: (2021) -
Machine learning and automatic ARIMA/Prophet models-based forecasting of COVID-19: methodology, evaluation, and case study in SAARC countries
por: Sardar, Iqra, et al.
Publicado: (2022) -
Deep Federated Adaptation: An Adaptative Residential Load Forecasting Approach with Federated Learning
por: Shi, Yuan, et al.
Publicado: (2022) -
An adaptive backpropagation algorithm for long-term electricity load forecasting
por: Mohammed, Nooriya A., et al.
Publicado: (2021)