Cargando…
Smartphone Sensor-Based Human Motion Characterization with Neural Stochastic Differential Equations and Transformer Model
With many conveniences afforded by advances in smartphone technology, developing advanced data analysis methods for health-related information from smartphone users has become a fast-growing research topic in the healthcare field. Along these lines, this paper addresses smartphone sensor-based chara...
Autores principales: | Lee, Juwon, Kim, Taehwan, Park, Jeongho, Park, Jooyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572335/ https://www.ncbi.nlm.nih.gov/pubmed/36236580 http://dx.doi.org/10.3390/s22197480 |
Ejemplares similares
-
Predicting Human Motion Signals Using Modern Deep Learning Techniques and Smartphone Sensors
por: Kim, Taehwan, et al.
Publicado: (2021) -
Co-Evolution of Predator-Prey Ecosystems by Reinforcement Learning Agents
por: Park, Jeongho, et al.
Publicado: (2021) -
Characterizing Dynamic Walking Patterns and Detecting Falls with Wearable Sensors Using Gaussian Process Methods
por: Kim, Taehwan, et al.
Publicado: (2017) -
Two-Stage Latent Dynamics Modeling and Filtering for Characterizing Individual Walking and Running Patterns with Smartphone Sensors
por: Kim, Jaein, et al.
Publicado: (2019) -
Anticipative Girsanov transformations and Skorohod stochastic differential equations
por: Buckdahn, Rainer
Publicado: (1994)