Cargando…

A Fast North-Finding Algorithm on the Moving Pedestal Based on the Technology of Extended State Observer (ESO)

We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Yunchao, Li, Bing, Zhang, Haosu, Wang, Sheng, Yan, Debao, Gao, Ziheng, Pan, Wenchao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572344/
https://www.ncbi.nlm.nih.gov/pubmed/36236646
http://dx.doi.org/10.3390/s22197547
Descripción
Sumario:We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the traditional Kalman fine-alignment model. This method includes two stages: the coarse alignment in the inertial frame and fine alignment based on the ESO technology. By utilizing the ESO technology, the convergence speed of the heading angle can be greatly accelerated. The advantages of this method are high-accuracy, fast-convergence, strong ability of anti-interference, and short time-cost (no need of KF recursive calculation). Then, the algorithm model, calculation process, and the setting initial-values of the filter are shown. Finally, taking the shipborne north-finder based on the FOG (fiber-optic gyroscope) as the investigated subject, the test on the moving ship is carried out. The results of first off-line simulation show that the misalignment angle of the heading angle of the proposed (traditional) method is ≤2.1′ (1.8′) after 5.5 (10) minutes of alignment. The results of second off-line simulation indicate that the misalignment angle of the heading angle of the proposed (traditional) method is ≤4.8′ (14.2′) after 5.5 (10) minutes of alignment. The simulations are based on the ship-running experimental data. The measurement precisions of Doppler velocity log (DVL) are different in these two experiments.