Cargando…

Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry

Currently, the high demand for new products in the automotive sector requires large investments in factories. The automotive industry is characterized by high automatization, largely achieved by manipulator robots capable of multitasking. This work presents a method for the optimization of trajector...

Descripción completa

Detalles Bibliográficos
Autores principales: Garriz, Carlos, Domingo, Rosario
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572378/
https://www.ncbi.nlm.nih.gov/pubmed/36236637
http://dx.doi.org/10.3390/s22197538
_version_ 1784810599052476416
author Garriz, Carlos
Domingo, Rosario
author_facet Garriz, Carlos
Domingo, Rosario
author_sort Garriz, Carlos
collection PubMed
description Currently, the high demand for new products in the automotive sector requires large investments in factories. The automotive industry is characterized by high automatization, largely achieved by manipulator robots capable of multitasking. This work presents a method for the optimization of trajectories in robots with six degrees of freedom and a spherical wrist. The optimization of trajectories is based on the maximization of manipulability and the minimization of electrical energy. For this purpose, it is necessary to take into account the kinematics and dynamics of the manipulator in order to integrate an algorithm for calculation. The algorithm is based on the Kalman method. This algorithm was implemented in a simulation of the trajectories of a serial industrial robot, in which the robot has a sealer gun located on its sixth axis and the quality of the sealer application depends directly on the orientation of the gun. During the optimization of the trajectory, the application of the sealer must be guaranteed. This method was also applied to three different trajectories in the automotive sector. The obtained results for manipulability and electrical energy consumption prove the efficiency of the algorithm. Therefore, this method searches for the optimal solution within the limits of the manipulator and maintains the orientation of the final effector. This can be used for a known trajectory.
format Online
Article
Text
id pubmed-9572378
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95723782022-10-17 Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry Garriz, Carlos Domingo, Rosario Sensors (Basel) Article Currently, the high demand for new products in the automotive sector requires large investments in factories. The automotive industry is characterized by high automatization, largely achieved by manipulator robots capable of multitasking. This work presents a method for the optimization of trajectories in robots with six degrees of freedom and a spherical wrist. The optimization of trajectories is based on the maximization of manipulability and the minimization of electrical energy. For this purpose, it is necessary to take into account the kinematics and dynamics of the manipulator in order to integrate an algorithm for calculation. The algorithm is based on the Kalman method. This algorithm was implemented in a simulation of the trajectories of a serial industrial robot, in which the robot has a sealer gun located on its sixth axis and the quality of the sealer application depends directly on the orientation of the gun. During the optimization of the trajectory, the application of the sealer must be guaranteed. This method was also applied to three different trajectories in the automotive sector. The obtained results for manipulability and electrical energy consumption prove the efficiency of the algorithm. Therefore, this method searches for the optimal solution within the limits of the manipulator and maintains the orientation of the final effector. This can be used for a known trajectory. MDPI 2022-10-05 /pmc/articles/PMC9572378/ /pubmed/36236637 http://dx.doi.org/10.3390/s22197538 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Garriz, Carlos
Domingo, Rosario
Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry
title Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry
title_full Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry
title_fullStr Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry
title_full_unstemmed Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry
title_short Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry
title_sort trajectory optimization in terms of energy and performance of an industrial robot in the manufacturing industry
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572378/
https://www.ncbi.nlm.nih.gov/pubmed/36236637
http://dx.doi.org/10.3390/s22197538
work_keys_str_mv AT garrizcarlos trajectoryoptimizationintermsofenergyandperformanceofanindustrialrobotinthemanufacturingindustry
AT domingorosario trajectoryoptimizationintermsofenergyandperformanceofanindustrialrobotinthemanufacturingindustry