Cargando…
An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction
Recent advances in deep learning have contributed greatly to the field of parallel MR imaging, where a reduced amount of k-space data are acquired to accelerate imaging time. In our previous work, we have proposed a deep learning method to reconstruct MR images directly from k-space data acquired wi...
Autores principales: | Oh, Changheun, Chung, Jun-Young, Han, Yeji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572393/ https://www.ncbi.nlm.nih.gov/pubmed/36236376 http://dx.doi.org/10.3390/s22197277 |
Ejemplares similares
-
End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks
por: Qasim, Shah Rukh, et al.
Publicado: (2022) -
Pathological Diagnosis of Adult Craniopharyngioma on MR Images: An Automated End-to-End Approach Based on Deep Neural Networks Requiring No Manual Segmentation
por: Teng, Yuen, et al.
Publicado: (2022) -
End-to-End Residual Network for Light Field Reconstruction on Raw Images and View Image Stacks
por: Salem, Ahmed, et al.
Publicado: (2022) -
Federated End-to-End Unrolled Models for Magnetic Resonance Image Reconstruction
por: Levac, Brett R., et al.
Publicado: (2023) -
End-to-End Deep Image Reconstruction From Human Brain Activity
por: Shen, Guohua, et al.
Publicado: (2019)