Cargando…
Deep Metric Learning Using Negative Sampling Probability Annealing
Multiple studies have concluded that the selection of input samples is key for deep metric learning. For triplet networks, the selection of the anchor, positive, and negative pairs is referred to as triplet mining. The selection of the negatives is considered the be the most complicated task, due to...
Autor principal: | Kertész, Gábor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572431/ https://www.ncbi.nlm.nih.gov/pubmed/36236678 http://dx.doi.org/10.3390/s22197579 |
Ejemplares similares
-
Quantum deep learning by sampling neural nets with a quantum annealer
por: Higham, Catherine F., et al.
Publicado: (2023) -
Probability measures on metric spaces
por: Parthasarathy, Kalyanapuram Rangachari, et al.
Publicado: (1967) -
Probability measures on metric spaces
por: Parthasarathy, K R
Publicado: (2005) -
Exploration of Despair Eccentricities Based on Scale Metrics with Feature Sampling Using a Deep Learning Algorithm
por: Hasanin, Tawfiq, et al.
Publicado: (2022) -
Meta-Learned and
TCAD-Assisted Sampling in Semiconductor
Laser Annealing
por: Rawat, Tejender Singh, et al.
Publicado: (2022)