Cargando…
A Parallel Classification Model for Marine Mammal Sounds Based on Multi-Dimensional Feature Extraction and Data Augmentation
Due to the poor visibility of the deep-sea environment, acoustic signals are often collected and analyzed to explore the behavior of marine species. With the progress of underwater signal-acquisition technology, the amount of acoustic data obtained from the ocean has exceeded the limit that human ca...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572586/ https://www.ncbi.nlm.nih.gov/pubmed/36236544 http://dx.doi.org/10.3390/s22197443 |
Sumario: | Due to the poor visibility of the deep-sea environment, acoustic signals are often collected and analyzed to explore the behavior of marine species. With the progress of underwater signal-acquisition technology, the amount of acoustic data obtained from the ocean has exceeded the limit that human can process manually, so designing efficient marine-mammal classification algorithms has become a research hotspot. In this paper, we design a classification model based on a multi-channel parallel structure, which can process multi-dimensional acoustic features extracted from audio samples, and fuse the prediction results of different channels through a trainable full connection layer. It uses transfer learning to obtain faster convergence speed, and introduces data augmentation to improve the classification accuracy. The k-fold cross-validation method was used to segment the data set to comprehensively evaluate the prediction accuracy and robustness of the model. The evaluation results showed that the model can achieve a mean accuracy of 95.21% while maintaining a standard deviation of 0.65%. There was excellent consistency in performance over multiple tests. |
---|