Cargando…

Sodium Alginate/Modified Bentonite Composite Bead Adsorptive Removal of Norfloxacin: Static and Dynamic Adsorption

The low-cost calcium-based bentonite modified with anionic and cationic surfactants was granulated by cross-linking to sodium alginate (SA) to promote the adsorption efficiencies of norfloxacin (NOR). The characterization studies illustrated that the intercalation of cetyltrimethylammonium bromide (...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Jun, Sun, Qianyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572629/
https://www.ncbi.nlm.nih.gov/pubmed/36235930
http://dx.doi.org/10.3390/polym14193984
Descripción
Sumario:The low-cost calcium-based bentonite modified with anionic and cationic surfactants was granulated by cross-linking to sodium alginate (SA) to promote the adsorption efficiencies of norfloxacin (NOR). The characterization studies illustrated that the intercalation of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl benzene sulfonate (SDBS) was successful. The modification improved the pore structure and the granular SA/organically modified bentonite composite (GOMBt) exhibited a lamellar structure with some roughness. The adsorption kinetics and isotherms indicated that adsorption of NOR on GOMBt was an endothermic process. The effects of various factors on the adsorption of NOR suggested that the maximum adsorption capacity was obtained under acidic conditions and cations improved the adsorption process. A fixed-bed column was employed to investigate the dynamic adsorption characteristics of NOR by GOMBt. The breakthrough time and bed height had a positive correlation; however, the relation of flow rate, pH, and breakthrough time had a negative correlation. The results showed that the dynamic adsorption data of NOR on GOMBt fitted Thomas and Yoon–Nelson models. The internal and external diffusion in GOMBt dynamic adsorption was not a rate-limiting step.