Cargando…
Development of a Highly Efficient Optoelectronic Device Based on CuFeO(2)/CuO/Cu Composite Nanomaterials
Herein, an optoelectronic device synthesized from a CuFeO(2)/CuO/Cu nanocomposite was obtained through the direct combustion of Cu foil coated with Fe(2)O(3) nanomaterials. The chemical, morphological, and optical properties of the nanocomposite were examined via different techniques, such as XRD, X...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572630/ https://www.ncbi.nlm.nih.gov/pubmed/36234202 http://dx.doi.org/10.3390/ma15196857 |
Sumario: | Herein, an optoelectronic device synthesized from a CuFeO(2)/CuO/Cu nanocomposite was obtained through the direct combustion of Cu foil coated with Fe(2)O(3) nanomaterials. The chemical, morphological, and optical properties of the nanocomposite were examined via different techniques, such as XRD, XPS, TEM, SEM, and UV/Vis spectrophotometer. The optical reflectance demonstrated a great enhancement in the CuFeO(2) optical properties compared to CuO nanomaterials. Such enhancements were clearly distinguished through the bandgap values, which varied between 1.35 and 1.38 eV, respectively. The XRD and XPS analyses confirmed the chemical structure of the prepared materials. The produced current density (J(ph)) was studied in dark and light conditions, thereby confirming the obtained optoelectronic properties. The J(ph) dependency to monochromatic wavelength was also investigated. The J(ph) value was equal to 0.033 mA·cm(−2) at 390 nm, which decreased to 0.031 mA·cm(−2) at 508 nm, and then increased to 0.0315 mA·cm(−2) at 636 nm. The light intensity effects were similarly inspected. The J(ph) values rose when the light intensities were augmented from 25 to 100 mW·cm(−2) to reach 0.031 and 0.05 mA·cm(−2), respectively. The photoresponsivity (R) and detectivity (D) values were found at 0.33 mA·W(−1) and 7.36 × 10(10) Jones at 390 nm. The produced values confirm the high light sensitivity of the prepared optoelectronic device in a broad optical region covering UV, Vis, and near IR, with high efficiency. Further works are currently being designed to develop a prototype of such an optoelectronic device so that it can be applied in industry. |
---|