Cargando…
A Novel Supervised Filter Feature Selection Method Based on Gaussian Probability Density for Fault Diagnosis of Permanent Magnet DC Motors
For permanent magnet DC motors (PMDCMs), the amplitude of the current signals gradually decreases after the motor starts. In this work, the time domain features and time-frequency-domain features extracted from several successive segments of current signals make up a feature vector, which is adopted...
Autores principales: | Wang, Weihao, Lu, Lixin, Wei, Wang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572652/ https://www.ncbi.nlm.nih.gov/pubmed/36236219 http://dx.doi.org/10.3390/s22197121 |
Ejemplares similares
-
Fault Diagnosis of Permanent Magnet DC Motors Based on Multi-Segment Feature Extraction
por: Lu, Lixin, et al.
Publicado: (2021) -
Adaptive Collaborative Gaussian Mixture Probability Hypothesis Density Filter for Multi-Target Tracking
por: Yang, Feng, et al.
Publicado: (2016) -
Fault Diagnosis and Fault Frequency Determination of Permanent Magnet Synchronous Motor Based on Deep Learning
por: Wang, Chiao-Sheng, et al.
Publicado: (2021) -
Analytical Modeling and Analysis of Permanent-Magnet Motor with Demagnetization Fault
por: Shi, Cenwei, et al.
Publicado: (2022) -
Fault Diagnosis of Permanent Magnet Synchronous Motor Based on Stacked Denoising Autoencoder
por: Xu, Xiaowei, et al.
Publicado: (2021)