Cargando…
Path Forming of Healthcare Practitioners in an Indoor Space Using Mobile Crowdsensing
While there are numerous causes of waste in the healthcare system, some of this waste is associated with inefficiency. Among the proposed solutions to address inefficiency is clinic layout optimization. Such optimization depends on how operating resources and instruments are placed in the clinic, in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572692/ https://www.ncbi.nlm.nih.gov/pubmed/36236644 http://dx.doi.org/10.3390/s22197546 |
Sumario: | While there are numerous causes of waste in the healthcare system, some of this waste is associated with inefficiency. Among the proposed solutions to address inefficiency is clinic layout optimization. Such optimization depends on how operating resources and instruments are placed in the clinic, in what order they are accessed to attain a particular task, and the mobility of clinicians between different clinic rooms to accomplish different clinic tasks. Traditionally, such optimization research involves manual monitoring by human proctors, which is time consuming, erroneous, unproductive, and subjective. If mobility patterns in an indoor space can be determined automatically in real time, layout and operation-related optimization decisions based on these patterns can be implemented accurately and continuously in a timely fashion. This paper explores this application domain where precise localization is not required; however, the determination of mobility is essential on a real-time basis. Given that, this research explores how only mobile devices and their built-in Bluetooth received signal strength indicator (RSSI) can be used to determine such mobility. With a collection of stationary mobile devices, with their computational and networking capabilities and lack of energy requirements, the mobility of moving mobile devices was determined. The research methodology involves developing two new algorithms that use raw RSSI data to create visualizations of movements across different operational units identified by stationary nodes. Compared with similar approaches, this research showcases that the method presented in this paper is viable and can produce mobility patterns in indoor spaces that can be utilized further for data analysis and visualization. |
---|