Cargando…
A Virtual Sensing Concept for Nitrogen and Phosphorus Monitoring Using Machine Learning Techniques
Harmful cyanobacterial bloom (HCB) is problematic for drinking water treatment, and some of its strains can produce toxins that significantly affect human health. To better control eutrophication and HCB, catchment managers need to continuously keep track of nitrogen (N) and phosphorus (P) in the wa...
Autores principales: | Paepae, Thulane, Bokoro, Pitshou N., Kyamakya, Kyandoghere |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572788/ https://www.ncbi.nlm.nih.gov/pubmed/36236438 http://dx.doi.org/10.3390/s22197338 |
Ejemplares similares
-
Data Augmentation for a Virtual-Sensor-Based Nitrogen and Phosphorus Monitoring
por: Paepae, Thulane, et al.
Publicado: (2023) -
From Fully Physical to Virtual Sensing for Water Quality Assessment: A Comprehensive Review of the Relevant State-of-the-Art
por: Paepae, Thulane, et al.
Publicado: (2021) -
A Deep-Learning Based Visual Sensing Concept for a Robust Classification of Document Images under Real-World Hard Conditions
por: Mohsenzadegan, Kabeh, et al.
Publicado: (2021) -
A Smart Visual Sensing Concept Involving Deep Learning for a Robust Optical Character Recognition under Hard Real-World Conditions
por: Mohsenzadegan, Kabeh, et al.
Publicado: (2022) -
Document-Image Related Visual Sensors and Machine Learning Techniques
por: Kyamakya, Kyandoghere, et al.
Publicado: (2021)