Cargando…

Coaxial Mach–Zehnder Digital Strain Sensor Made from a Tapered Depressed Cladding Fiber

An in-line digital optical sensor was proposed. It was built from a tapered depressed-cladding single-mode fiber and modeled as a coaxial Mach–Zehnder interferometer. The principle of operation of the optical digital sensor is based on the computation of the number of optical power transfer turning...

Descripción completa

Detalles Bibliográficos
Autores principales: Celaschi, Sergio, Grégoire, Nicolas, Messaddeq, Younès, Biazoli, Claudecir R., Malheiros-Silveira, Gilliard N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572830/
https://www.ncbi.nlm.nih.gov/pubmed/36236244
http://dx.doi.org/10.3390/s22197145
Descripción
Sumario:An in-line digital optical sensor was proposed. It was built from a tapered depressed-cladding single-mode fiber and modeled as a coaxial Mach–Zehnder interferometer. The principle of operation of the optical digital sensor is based on the computation of the number of optical power transfer turning points (PTTP) from the transmission data of the component. Biconic tapers with high values of PTTP, high spectral resolution, high extinction ratio, and low insertion loss were modeled, fabricated, and characterized. As a proof of concept, an in-line digital strain sensor was fabricated and characterized. It presents a free spectral range of 1.3 nm, and produced 96 PTTP, at λ(0) = 1.55 μm, under stretch of ΔL = 707 µm, therefore producing a digital resolution of 7.4 µm/PTTP. The sensor also produced a quasi-symmetric response to stretch and compression.