Cargando…

Front Transparent Passivation of CIGS-Based Solar Cells via AZO

We report a novel strategy for the front passivation of solar cells via aluminum-doped zinc oxide (AZO) films in the case of CIGS solar cells, leading to the highest efficiency of 15.07% without alkali metal post treatment and anti−reflective layer. The good passivation of CIGS solar cells via AZO f...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, He, Qu, Fei, Li, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572985/
https://www.ncbi.nlm.nih.gov/pubmed/36234821
http://dx.doi.org/10.3390/molecules27196285
Descripción
Sumario:We report a novel strategy for the front passivation of solar cells via aluminum-doped zinc oxide (AZO) films in the case of CIGS solar cells, leading to the highest efficiency of 15.07% without alkali metal post treatment and anti−reflective layer. The good passivation of CIGS solar cells via AZO films is attributed to the field passivation simulated by the SCAPS−1D software. The AZO films also exhibit high optical transparency both in visible and near infrared wavelength region, high conductivity, and cost−effective fabrication advantage. Importantly, the AZO films are deposited at room temperature via radio−frequency magnetron sputtering, showing that the AZO films are also applicable to other solar cells such as perovskite solar cells. Our work is of significance for advancing the development of CIGS−based photovoltaics devices by the well front passivation of AZO. The wide application of AZO in other solar cells such as perovskite solar cells and related tandem solar cells may also accelerate the development of these solar cells because of potential passivation of AZO, low deposition temperature, and high optical transparency of AZO.