Cargando…
A Framework for Inclusion of Unmodelled Contact Tasks Dynamics in Industrial Robotics
This paper presents a method to include unmodeled dynamics of load or a robot’s end-effector into algorithms for collision detection or general understanding of a robot’s operation context. The approach relies on the application of a previously developed modification of the Dynamic Time Warping algo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573079/ https://www.ncbi.nlm.nih.gov/pubmed/36236747 http://dx.doi.org/10.3390/s22197650 |
Sumario: | This paper presents a method to include unmodeled dynamics of load or a robot’s end-effector into algorithms for collision detection or general understanding of a robot’s operation context. The approach relies on the application of a previously developed modification of the Dynamic Time Warping algorithm, as well as a universally applicable algorithm for identifying kinematic parameters. The entire process can be applied to arbitrary robot configuration, and it does not require identification of dynamic parameters. The paper addresses the two main categories of contact tasks with unmodelled dynamics, which are determined based on whether the external contact force has a consistent profile in the end effector or base coordinate. Conclusions for representative examples analysed in the paper are applicable to tasks such as load manipulation, press bending, and crimping for the first type of forces and applications such as drilling, screwdriving, snap-fit, bolting, and riveting assembly for the latter category. The results presented in the paper are based on realistic testing with measurements obtained from an industrial robot. |
---|