Cargando…
Thermodynamic Simulation of Environmental and Population Protection by Utilization of Technogenic Tailings of Enrichment
During mining, only 4–8% is converted to final products, and the rest is accumulated in landfills. There is a lack of research on the study of various patterns and mechanisms of the formation of cement clinker minerals during the simultaneous distillation of zinc. This paper presents studies of ther...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573172/ https://www.ncbi.nlm.nih.gov/pubmed/36234321 http://dx.doi.org/10.3390/ma15196980 |
Sumario: | During mining, only 4–8% is converted to final products, and the rest is accumulated in landfills. There is a lack of research on the study of various patterns and mechanisms of the formation of cement clinker minerals during the simultaneous distillation of zinc. This paper presents studies of thermodynamic stimulation of environmental and population protection by utilization of technogenic enrichment waste as secondary raw materials for clinker production and zinc extraction. In particular, a comparison of the Gibbs energy (ΔG) of clinker formation under standard chemical equations and under non-standard chemical equations is given. According to the results of the study, using thermodynamic simulation, the temperature intervals of mineral formation, the dependence of the Gibbs energy on temperature (ΔG(T)°), and the approximation equations were found; it was established that the presence of zinc ferrite contributes to the intensification of the formation of clinker minerals and the extraction of Zn to gas. |
---|