Cargando…
A Probabilistic Bayesian Parallel Deep Learning Framework for Wind Turbine Bearing Fault Diagnosis
The technology of fault diagnosis helps improve the reliability of wind turbines. Difficulties in feature extraction and low confidence in diagnostic results are widespread in the process of deep learning-based fault diagnosis of wind turbine bearings. Therefore, a probabilistic Bayesian parallel de...
Autores principales: | Meng, Liang, Su, Yuanhao, Kong, Xiaojia, Lan, Xiaosheng, Li, Yunfeng, Xu, Tongle, Ma, Jinying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573366/ https://www.ncbi.nlm.nih.gov/pubmed/36236741 http://dx.doi.org/10.3390/s22197644 |
Ejemplares similares
-
Research on Extraction of Compound Fault Characteristics for Rolling Bearings in Wind Turbines
por: Xiang, Ling, et al.
Publicado: (2020) -
Wind Turbine Main Bearing Fault Prognosis Based Solely on SCADA Data
por: Encalada-Dávila, Ángel, et al.
Publicado: (2021) -
Structural control and fault detection of wind turbine systems
por: Karimi, Hamid Reza
Publicado: (2018) -
An SVM-Based Solution for Fault Detection in Wind Turbines
por: Santos, Pedro, et al.
Publicado: (2015) -
Misalignment Fault Diagnosis for Wind Turbines Based on Information Fusion
por: Xiao, Yancai, et al.
Publicado: (2021)