Cargando…
Physicochemical Properties and In Vitro Digestibility of Starch from a Trace-Rutinosidase Variety of Tartary Buckwheat ‘Manten-Kirari’
We recently developed a novel Tartary buckwheat variety, ‘Manten-Kirari’, with trace-rutinosidase activity. The use of ‘Manten-Kirari’ enabled us to make rutin-rich food products with low bitterness. This study was intended to evaluate the physicochemical properties and in vitro digestibility of sta...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573436/ https://www.ncbi.nlm.nih.gov/pubmed/36234708 http://dx.doi.org/10.3390/molecules27196172 |
Sumario: | We recently developed a novel Tartary buckwheat variety, ‘Manten-Kirari’, with trace-rutinosidase activity. The use of ‘Manten-Kirari’ enabled us to make rutin-rich food products with low bitterness. This study was intended to evaluate the physicochemical properties and in vitro digestibility of starch isolated from ‘Manten-Kirari’. For comparison, the representative common buckwheat variety ‘Kitawasesoba’ and Tartary buckwheat variety ‘Hokkai T8’ in Japan were also used. The lowest content of amylose was found in ‘Manten-Kirari’ starch (18.1%) while the highest was in ‘Kitawasesoba’ starch (22.6%). ‘Manten-Kirari’ starch exhibited a larger median granule size (11.41 µm) and higher values of peak viscosity (286.8 RVU) and breakdown (115.2 RVU) than the others. The values of onset temperature for gelatinization were 60.5 °C for ‘Kitawasesoba’, 61.3 °C for ‘Manten-Kirari’, and 64.7 °C for ‘Hokkai T8’. ‘Manten-Kirari’ and ‘Hokkai T8’ starches were digested more slowly than ‘Kitawasesoba’ starch. Our results will provide fundamental information concerning the expanded use of ‘Manten-Kirari’ in functional foods. |
---|