Cargando…
Ship Fire Detection Based on an Improved YOLO Algorithm with a Lightweight Convolutional Neural Network Model
Ship fire is one of the greatest dangers to ship navigation safety. Nevertheless, typical detection methods have limited detection effectiveness and accuracy due to distance restrictions and ship motion. Although the issue can be addressed by image recognition algorithms based on deep learning, the...
Autores principales: | Wu, Huafeng, Hu, Yanglin, Wang, Weijun, Mei, Xiaojun, Xian, Jiangfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573461/ https://www.ncbi.nlm.nih.gov/pubmed/36236518 http://dx.doi.org/10.3390/s22197420 |
Ejemplares similares
-
Improvement of Lightweight Convolutional Neural Network Model Based on YOLO Algorithm and Its Research in Pavement Defect Detection
por: Du, Fu-Jun, et al.
Publicado: (2022) -
CAA-YOLO: Combined-Attention-Augmented YOLO for Infrared Ocean Ships Detection
por: Ye, Jing, et al.
Publicado: (2022) -
Efficient-Lightweight YOLO: Improving Small Object Detection in YOLO for Aerial Images
por: Hu, Mengzi, et al.
Publicado: (2023) -
DB-YOLO: A Duplicate Bilateral YOLO Network for Multi-Scale Ship Detection in SAR Images
por: Zhu, Haozhen, et al.
Publicado: (2021) -
YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Selection in Aerial Imagery
por: Betti, Alessandro, et al.
Publicado: (2023)