Cargando…
Parallel Frequency Function-Deep Neural Network for Efficient Approximation of Complex Broadband Signals
In recent years, with the growing popularity of complex signal approximation via deep neural networks, people have begun to pay close attention to the spectral bias of neural networks—a problem that occurs when a neural network is used to fit broadband signals. An important direction taken to overco...
Autores principales: | Zeng, Zhi, Shi, Pengpeng, Ma, Fulei, Qi, Peihan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573465/ https://www.ncbi.nlm.nih.gov/pubmed/36236446 http://dx.doi.org/10.3390/s22197347 |
Ejemplares similares
-
Design of ultra-thin underwater acoustic metasurface for broadband low-frequency diffuse reflection by deep neural networks
por: Li, Ruichen, et al.
Publicado: (2022) -
Smooth Function Approximation by Deep Neural Networks with General Activation Functions
por: Ohn, Ilsang, et al.
Publicado: (2019) -
Analytic Function Approximation by Path-Norm-Regularized Deep Neural Networks
por: Beknazaryan, Aleksandr
Publicado: (2022) -
Time-Effective Simulation Methodology for Broadband Achromatic Metalens Using Deep Neural Networks
por: Fan, Chun-Yuan, et al.
Publicado: (2021) -
Broadband vectorial ultrathin optics with experimental efficiency up to 99% in the visible region via universal approximators
por: Getman, F., et al.
Publicado: (2021)