Cargando…
Classification of EEG Using Adaptive SVM Classifier with CSP and Online Recursive Independent Component Analysis
An efficient feature extraction method for two classes of electroencephalography (EEG) is demonstrated using Common Spatial Patterns (CSP) with optimal spatial filters. However, the effects of artifacts and non-stationary uncertainty are more pronounced when CSP filtering is used. Furthermore, tradi...
Autores principales: | Antony, Mary Judith, Sankaralingam, Baghavathi Priya, Mahendran, Rakesh Kumar, Gardezi, Akber Abid, Shafiq, Muhammad, Choi, Jin-Ghoo, Hamam, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573537/ https://www.ncbi.nlm.nih.gov/pubmed/36236694 http://dx.doi.org/10.3390/s22197596 |
Ejemplares similares
-
Brain–Computer Interface: The HOL–SSA Decomposition and Two-Phase Classification on the HGD EEG Data
por: Antony, Mary Judith, et al.
Publicado: (2023) -
Alignment-free supervised classification of metagenomes by recursive SVM
por: Cui, Hongfei, et al.
Publicado: (2013) -
Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data
por: Zhang, Xuegong, et al.
Publicado: (2006) -
Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood
por: Zhang, Fan, et al.
Publicado: (2013) -
Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE
por: Niijima, Satoshi, et al.
Publicado: (2006)