Cargando…
Exercise Training Attenuates Hypertension via Suppressing ROS/MAPK/NF-κB/AT-1R Pathway in the Hypothalamic Paraventricular Nucleus
Background: Aerobic exercise training (ExT) is beneficial for hypertension, however, its central mechanisms in improving hypertension remain unclear. Since the importance of the up-regulation of angiotensin II type 1 receptor (AT-1R) in the paraventricular nucleus (PVN) of the hypothalamic in sympat...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573547/ https://www.ncbi.nlm.nih.gov/pubmed/36235619 http://dx.doi.org/10.3390/nu14193968 |
Sumario: | Background: Aerobic exercise training (ExT) is beneficial for hypertension, however, its central mechanisms in improving hypertension remain unclear. Since the importance of the up-regulation of angiotensin II type 1 receptor (AT-1R) in the paraventricular nucleus (PVN) of the hypothalamic in sympathoexcitation and hypertension has been shown, we testified the hypothesis that aerobic ExT decreases blood pressure in hypertensive rats by down-regulating the AT-1R through reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK)/nuclear factors κB (NF-κB) pathway within the PVN. Methods: Forty-eight male Sprague-Dawley (SD) rats were assigned to the following groups: sham operation (SHAM) + kept sedentary (Sed), SHAM + exercise training (ExT), two kidney-one clamp (2K1C) + Sed, and 2K1C + ExT groups. Results: The 2K1C + Sed hypertensive rats showed higher systolic blood pressure (SBP), upregulated ROS, phosphorylated (p-) p44/42 MAPK, p-p38 MAPK, NF-κB p65 activity, and AT-1R expression in the PVN, and increased circulating norepinephrine (NE) than those of SHAM rats. After eight weeks of aerobic ExT, the 2K1C + ExT hypertensive rats showed attenuated NE and SBP levels, suppressed NF-κB p65 activity, and reduced expression of ROS, p-p44/42 MAPK, p-p38 MAPK, and AT-1R in the PVN, relatively to the 2K1C + Sed group. Conclusions: These data are suggestive of beneficial effects of aerobic ExT in decreasing SBP in hypertensive rats, via down-regulating the ROS/MAPK/NF-κB pathway that targets AT-1R in the PVN, and eventually ameliorating 2K1C-induced hypertension. |
---|