Cargando…
A Novel Prediction Tool for Endoscopic Intervention in Patients with Acute Upper Gastro-Intestinal Bleeding
(1) Background: Predicting which patients with upper gastro-intestinal bleeding (UGIB) will receive intervention during urgent endoscopy can allow for better triaging and resource utilization but remains sub-optimal. Using machine learning modelling we aimed to devise an improved endoscopic interven...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573673/ https://www.ncbi.nlm.nih.gov/pubmed/36233760 http://dx.doi.org/10.3390/jcm11195893 |
_version_ | 1784810931489865728 |
---|---|
author | Veisman, Ido Oppenheim, Amit Maman, Ronny Kofman, Nadav Edri, Ilan Dar, Lior Klang, Eyal Sina, Sigal Gabriely, Daniel Levy, Idan Beylin, Dmitry Beylin, Ortal Shekel, Efrat Horesh, Nir Kopylov, Uri |
author_facet | Veisman, Ido Oppenheim, Amit Maman, Ronny Kofman, Nadav Edri, Ilan Dar, Lior Klang, Eyal Sina, Sigal Gabriely, Daniel Levy, Idan Beylin, Dmitry Beylin, Ortal Shekel, Efrat Horesh, Nir Kopylov, Uri |
author_sort | Veisman, Ido |
collection | PubMed |
description | (1) Background: Predicting which patients with upper gastro-intestinal bleeding (UGIB) will receive intervention during urgent endoscopy can allow for better triaging and resource utilization but remains sub-optimal. Using machine learning modelling we aimed to devise an improved endoscopic intervention predicting tool. (2) Methods: A retrospective cohort study of adult patients diagnosed with UGIB between 2012–2018 who underwent esophagogastroduodenoscopy (EGD) during hospitalization. We assessed the correlation between various parameters with endoscopic intervention and examined the prediction performance of the Glasgow-Blatchford score (GBS) and the pre-endoscopic Rockall score for endoscopic intervention. We also trained and tested a new machine learning-based model for the prediction of endoscopic intervention. (3) Results: A total of 883 patients were included. Risk factors for endoscopic intervention included cirrhosis (9.0% vs. 3.8%, p = 0.01), syncope at presentation (19.3% vs. 5.4%, p < 0.01), early EGD (6.8 h vs. 17.0 h, p < 0.01), pre-endoscopic administration of tranexamic acid (TXA) (43.4% vs. 31.0%, p < 0.01) and erythromycin (17.2% vs. 5.6%, p < 0.01). Higher GBS (11 vs. 9, p < 0.01) and pre-endoscopy Rockall score (4.7 vs. 4.1, p < 0.01) were significantly associated with endoscopic intervention; however, the predictive performance of the scores was low (AUC of 0.54, and 0.56, respectively). A combined machine learning-developed model demonstrated improved predictive ability (AUC 0.68) using parameters not included in standard GBS. (4) Conclusions: The GBS and pre-endoscopic Rockall score performed poorly in endoscopic intervention prediction. An improved predictive tool has been proposed here. Further studies are needed to examine if predicting this important triaging decision can be further optimized. |
format | Online Article Text |
id | pubmed-9573673 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95736732022-10-17 A Novel Prediction Tool for Endoscopic Intervention in Patients with Acute Upper Gastro-Intestinal Bleeding Veisman, Ido Oppenheim, Amit Maman, Ronny Kofman, Nadav Edri, Ilan Dar, Lior Klang, Eyal Sina, Sigal Gabriely, Daniel Levy, Idan Beylin, Dmitry Beylin, Ortal Shekel, Efrat Horesh, Nir Kopylov, Uri J Clin Med Article (1) Background: Predicting which patients with upper gastro-intestinal bleeding (UGIB) will receive intervention during urgent endoscopy can allow for better triaging and resource utilization but remains sub-optimal. Using machine learning modelling we aimed to devise an improved endoscopic intervention predicting tool. (2) Methods: A retrospective cohort study of adult patients diagnosed with UGIB between 2012–2018 who underwent esophagogastroduodenoscopy (EGD) during hospitalization. We assessed the correlation between various parameters with endoscopic intervention and examined the prediction performance of the Glasgow-Blatchford score (GBS) and the pre-endoscopic Rockall score for endoscopic intervention. We also trained and tested a new machine learning-based model for the prediction of endoscopic intervention. (3) Results: A total of 883 patients were included. Risk factors for endoscopic intervention included cirrhosis (9.0% vs. 3.8%, p = 0.01), syncope at presentation (19.3% vs. 5.4%, p < 0.01), early EGD (6.8 h vs. 17.0 h, p < 0.01), pre-endoscopic administration of tranexamic acid (TXA) (43.4% vs. 31.0%, p < 0.01) and erythromycin (17.2% vs. 5.6%, p < 0.01). Higher GBS (11 vs. 9, p < 0.01) and pre-endoscopy Rockall score (4.7 vs. 4.1, p < 0.01) were significantly associated with endoscopic intervention; however, the predictive performance of the scores was low (AUC of 0.54, and 0.56, respectively). A combined machine learning-developed model demonstrated improved predictive ability (AUC 0.68) using parameters not included in standard GBS. (4) Conclusions: The GBS and pre-endoscopic Rockall score performed poorly in endoscopic intervention prediction. An improved predictive tool has been proposed here. Further studies are needed to examine if predicting this important triaging decision can be further optimized. MDPI 2022-10-05 /pmc/articles/PMC9573673/ /pubmed/36233760 http://dx.doi.org/10.3390/jcm11195893 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Veisman, Ido Oppenheim, Amit Maman, Ronny Kofman, Nadav Edri, Ilan Dar, Lior Klang, Eyal Sina, Sigal Gabriely, Daniel Levy, Idan Beylin, Dmitry Beylin, Ortal Shekel, Efrat Horesh, Nir Kopylov, Uri A Novel Prediction Tool for Endoscopic Intervention in Patients with Acute Upper Gastro-Intestinal Bleeding |
title | A Novel Prediction Tool for Endoscopic Intervention in Patients with Acute Upper Gastro-Intestinal Bleeding |
title_full | A Novel Prediction Tool for Endoscopic Intervention in Patients with Acute Upper Gastro-Intestinal Bleeding |
title_fullStr | A Novel Prediction Tool for Endoscopic Intervention in Patients with Acute Upper Gastro-Intestinal Bleeding |
title_full_unstemmed | A Novel Prediction Tool for Endoscopic Intervention in Patients with Acute Upper Gastro-Intestinal Bleeding |
title_short | A Novel Prediction Tool for Endoscopic Intervention in Patients with Acute Upper Gastro-Intestinal Bleeding |
title_sort | novel prediction tool for endoscopic intervention in patients with acute upper gastro-intestinal bleeding |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573673/ https://www.ncbi.nlm.nih.gov/pubmed/36233760 http://dx.doi.org/10.3390/jcm11195893 |
work_keys_str_mv | AT veismanido anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT oppenheimamit anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT mamanronny anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT kofmannadav anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT edriilan anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT darlior anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT klangeyal anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT sinasigal anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT gabrielydaniel anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT levyidan anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT beylindmitry anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT beylinortal anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT shekelefrat anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT horeshnir anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT kopylovuri anovelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT veismanido novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT oppenheimamit novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT mamanronny novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT kofmannadav novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT edriilan novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT darlior novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT klangeyal novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT sinasigal novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT gabrielydaniel novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT levyidan novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT beylindmitry novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT beylinortal novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT shekelefrat novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT horeshnir novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding AT kopylovuri novelpredictiontoolforendoscopicinterventioninpatientswithacuteuppergastrointestinalbleeding |