Cargando…
A Hybrid Deep Learning Model Using Grid Search and Cross-Validation for Effective Classification and Prediction of Suicidal Ideation from Social Network Data
Suicide deaths due to depression and mental stress are growing rapidly at an alarming rate. People freely express their feelings and emotions on social network sites while they feel hesitant to express such feelings during face-to-face interactions with their dear ones. In this study, a dataset comp...
Autores principales: | Chadha, Akshma, Kaushik, Baijnath |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ohmsha
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573777/ https://www.ncbi.nlm.nih.gov/pubmed/36267123 http://dx.doi.org/10.1007/s00354-022-00191-1 |
Ejemplares similares
-
Performance Evaluation of Learning Models for the Prognosis of COVID-19
por: Kaushik, Baijnath, et al.
Publicado: (2023) -
Detecting and Analyzing Suicidal Ideation on Social Media Using Deep Learning and Machine Learning Models
por: Aldhyani, Theyazn H. H., et al.
Publicado: (2022) -
Suicide Ideation of Individuals in Online Social Networks
por: Masuda, Naoki, et al.
Publicado: (2013) -
Social factors and suicidal ideation in adulthood
por: Lirón, A. Rodríguez, et al.
Publicado: (2021) -
Correction: Suicide Ideation of Individuals in Online Social Networks
por: Masuda, Naoki, et al.
Publicado: (2014)