Cargando…
Network science approach elucidates integrative genomic-metabolomic signature of antidepressant response and lifetime history of attempted suicide in adults with major depressive disorder
Background: Individuals with major depressive disorder (MDD) and a lifetime history of attempted suicide demonstrate lower antidepressant response rates than those without a prior suicide attempt. Identifying biomarkers of antidepressant response and lifetime history of attempted suicide may help au...
Autores principales: | Grant, Caroline W., Wilton, Angelina R., Kaddurah-Daouk, Rima, Skime, Michelle, Biernacka, Joanna, Mayes, Taryn, Carmody, Thomas, Wang, Liewei, Lazaridis, Konstantinos, Weinshilboum, Richard, Bobo, William V., Trivedi, Madhukar H., Croarkin, Paul E., Athreya, Arjun P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573988/ https://www.ncbi.nlm.nih.gov/pubmed/36263124 http://dx.doi.org/10.3389/fphar.2022.984383 |
Ejemplares similares
-
Multi-omics driven predictions of response to acute phase combination antidepressant therapy: a machine learning approach with cross-trial replication
por: Joyce, Jeremiah B., et al.
Publicado: (2021) -
Multi-Omics Characterization of Early- and Adult-Onset Major Depressive Disorder
por: Grant, Caroline W., et al.
Publicado: (2022) -
Prediction of short-term antidepressant response using probabilistic graphical models with replication across multiple drugs and treatment settings
por: Athreya, Arjun P., et al.
Publicado: (2021) -
Evidence for machine learning guided early prediction of acute outcomes in the treatment of depressed children and adolescents with antidepressants
por: Athreya, Arjun P., et al.
Publicado: (2022) -
Pharmacogenomics‐Driven Prediction of Antidepressant Treatment Outcomes: A Machine‐Learning Approach With Multi‐trial Replication
por: Athreya, Arjun P., et al.
Publicado: (2019)