Cargando…
Development and validation of a predictive model combining clinical, radiomics, and deep transfer learning features for lymph node metastasis in early gastric cancer
BACKGROUND: This study aims to develop and validate a predictive model combining deep transfer learning, radiomics, and clinical features for lymph node metastasis (LNM) in early gastric cancer (EGC). MATERIALS AND METHODS: This study retrospectively collected 555 patients with EGC, and randomly div...
Autores principales: | Zeng, Qingwen, Li, Hong, Zhu, Yanyan, Feng, Zongfeng, Shu, Xufeng, Wu, Ahao, Luo, Lianghua, Cao, Yi, Tu, Yi, Xiong, Jianbo, Zhou, Fuqing, Li, Zhengrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573999/ https://www.ncbi.nlm.nih.gov/pubmed/36262277 http://dx.doi.org/10.3389/fmed.2022.986437 |
Ejemplares similares
-
CT-based radiomic nomogram for preoperative prediction of DNA mismatch repair deficiency in gastric cancer
por: Zeng, Qingwen, et al.
Publicado: (2022) -
Development and validation of a CT radiomics and clinical feature model to predict omental metastases for locally advanced gastric cancer
por: Wu, Ahao, et al.
Publicado: (2023) -
Deep learning model for diagnosing early gastric cancer using preoperative computed tomography images
por: Zeng, Qingwen, et al.
Publicado: (2022) -
RNF114 Silencing Inhibits the Proliferation and Metastasis of Gastric Cancer
por: Feng, Zongfeng, et al.
Publicado: (2022) -
Hub gene identification and molecular subtype construction for Helicobacter pylori in gastric cancer via machine learning methods and NMF algorithm
por: Luo, Lianghua, et al.
Publicado: (2023)