Cargando…

Patient's behavior of selection physician in online health communities: Based on an Elaboration likelihood model

BACKGROUND: With the rapid development of “Internet + medicine” and the impact of the COVID-19 epidemic, online health communities have become an important way for patients to seek medical treatment. However, the mistrust between physicians and patients in online health communities has long existed...

Descripción completa

Detalles Bibliográficos
Autores principales: Qin, Min, Zhu, Wei, You, Changmeng, Li, Shuqin, Qiu, Shanshan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574016/
https://www.ncbi.nlm.nih.gov/pubmed/36262241
http://dx.doi.org/10.3389/fpubh.2022.986933
Descripción
Sumario:BACKGROUND: With the rapid development of “Internet + medicine” and the impact of the COVID-19 epidemic, online health communities have become an important way for patients to seek medical treatment. However, the mistrust between physicians and patients in online health communities has long existed and continues to impact the decision-making behavior of patients. The purpose of this article is to explore the influencing factors of patient decision-making in online health communities by identifying the relationship between physicians' online information and patients' selection behavior. METHODS: In this study, we selected China's Good Doctor (www.haodf.com) as the source of data, scrapped 10,446 physician data from December 2020 to June 2021 to construct a logit model of online patients' selection behavior, and used regression analysis to test the hypotheses. RESULTS: The number of types of services, number of scientific articles, and avatar in physicians' personal information all has a positive effect on patients' selection behavior, while the title and personal introduction hurt patients' selection behavior. Online word-of-mouth positively affected patients' selection behavior and disease risk had a moderating effect. CONCLUSION: Focusing on physician-presented information, this article organically combines the Elaboration likelihood model with trust source theory and online word-of-mouth from the perspective of the trusted party–physician, providing new ideas for the study of factors influencing patients' selection behavior in online health communities. The findings provide useful insights for patients, physicians, and community managers about the relationship between physician information and patients' selection behavior.