Cargando…
Classifying primary central nervous system lymphoma from glioblastoma using deep learning and radiomics based machine learning approach - a systematic review and meta-analysis
BACKGROUND: Glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) are common in elderly yet difficult to differentiate on MRI. Their management and prognosis are quite different. Recent surge of interest in predictive analytics, using machine learning (ML) from radiomic features and...
Autores principales: | Guha, Amrita, Goda, Jayant S., Dasgupta, Archya, Mahajan, Abhishek, Halder, Soutik, Gawde, Jeetendra, Talole, Sanjay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574102/ https://www.ncbi.nlm.nih.gov/pubmed/36263203 http://dx.doi.org/10.3389/fonc.2022.884173 |
Ejemplares similares
-
Predicting IDH subtype of grade 4 astrocytoma and glioblastoma from tumor radiomic patterns extracted from multiparametric magnetic resonance images using a machine learning approach
por: Kandalgaonkar, Pashmina, et al.
Publicado: (2022) -
Comparison of Radiomics-Based Machine-Learning Classifiers in Diagnosis of Glioblastoma From Primary Central Nervous System Lymphoma
por: Chen, Chaoyue, et al.
Publicado: (2020) -
Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning
por: Baid, Ujjwal, et al.
Publicado: (2020) -
Machine-Learning-Based Radiomics for Classifying Glioma Grade from Magnetic Resonance Images of the Brain
por: Kumar, Anuj, et al.
Publicado: (2023) -
Imaging for Plasma Cell Dyscrasias: What, When, and How?
por: Guha, Amrita, et al.
Publicado: (2022)