Cargando…
Oral Administration of Therapeutic Enzyme Capsule for the Management of Inflammatory Bowel Disease
BACKGROUND: Oral administration of proteins/peptides is challenging in clinical application due to their instability and susceptibility in the gastrointestinal tract. MATERIALS AND METHODS: The in situ polymerization on the surface of enzymes was used to encapsulate antioxidant enzymes (superoxide d...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574266/ https://www.ncbi.nlm.nih.gov/pubmed/36262191 http://dx.doi.org/10.2147/IJN.S378073 |
_version_ | 1784811070108467200 |
---|---|
author | Liang, Xiao Wen, Kai Chen, Yingxuan Fang, Guangxu Yang, Shengcai Li, Quanshun |
author_facet | Liang, Xiao Wen, Kai Chen, Yingxuan Fang, Guangxu Yang, Shengcai Li, Quanshun |
author_sort | Liang, Xiao |
collection | PubMed |
description | BACKGROUND: Oral administration of proteins/peptides is challenging in clinical application due to their instability and susceptibility in the gastrointestinal tract. MATERIALS AND METHODS: The in situ polymerization on the surface of enzymes was used to encapsulate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) in polymeric shells, and the reactive oxygen species (ROS) scavenging ability was monitored based on DCFH-DA probe using flow cytometry and confocal laser scanning microscopy. The mRNA expression level of pro-inflammatory factors was assessed by real-time qPCR, using lipopolysaccharide-induced RAW264.7 cells as a model. Finally, the enzyme capsules were orally administered for the treatment of inflammatory bowel disease using dextran sodium sulfate (DSS)-induced colitis mice as a model, based on the evaluation of the disease-associated index, ROS level and pro-inflammatory cytokines’ expression. RESULTS: The enzyme capsules could effectively scavenge the intracellular reactive oxygen species (ROS) through the cascade catalysis of SOD and CAT, and thus protect the cells from ROS-induced oxidative damage. Meanwhile, the enzyme capsules could inhibit the secretion of pro-inflammatory cytokines from macrophages, thereby achieving favorable anti-inflammation effect. Oral administration of enzyme capsules could facilitate the accumulation of enzymes in the inflamed colon tissues of DSS-induced colitis mice. Moreover, the oral delivery of enzyme capsules could effectively alleviate the symptoms associated with colitis, attributing to the excellent ROS scavenging ability and the inhibition of pro-inflammatory cytokines’ level. CONCLUSION: In summary, our findings provided a promising approach to construct enzyme-based nano-formulations with favorable therapeutic efficacy and biocompatibility, exhibiting great potential in the treatment of gastrointestinal diseases in an oral administration manner. |
format | Online Article Text |
id | pubmed-9574266 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-95742662022-10-18 Oral Administration of Therapeutic Enzyme Capsule for the Management of Inflammatory Bowel Disease Liang, Xiao Wen, Kai Chen, Yingxuan Fang, Guangxu Yang, Shengcai Li, Quanshun Int J Nanomedicine Original Research BACKGROUND: Oral administration of proteins/peptides is challenging in clinical application due to their instability and susceptibility in the gastrointestinal tract. MATERIALS AND METHODS: The in situ polymerization on the surface of enzymes was used to encapsulate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) in polymeric shells, and the reactive oxygen species (ROS) scavenging ability was monitored based on DCFH-DA probe using flow cytometry and confocal laser scanning microscopy. The mRNA expression level of pro-inflammatory factors was assessed by real-time qPCR, using lipopolysaccharide-induced RAW264.7 cells as a model. Finally, the enzyme capsules were orally administered for the treatment of inflammatory bowel disease using dextran sodium sulfate (DSS)-induced colitis mice as a model, based on the evaluation of the disease-associated index, ROS level and pro-inflammatory cytokines’ expression. RESULTS: The enzyme capsules could effectively scavenge the intracellular reactive oxygen species (ROS) through the cascade catalysis of SOD and CAT, and thus protect the cells from ROS-induced oxidative damage. Meanwhile, the enzyme capsules could inhibit the secretion of pro-inflammatory cytokines from macrophages, thereby achieving favorable anti-inflammation effect. Oral administration of enzyme capsules could facilitate the accumulation of enzymes in the inflamed colon tissues of DSS-induced colitis mice. Moreover, the oral delivery of enzyme capsules could effectively alleviate the symptoms associated with colitis, attributing to the excellent ROS scavenging ability and the inhibition of pro-inflammatory cytokines’ level. CONCLUSION: In summary, our findings provided a promising approach to construct enzyme-based nano-formulations with favorable therapeutic efficacy and biocompatibility, exhibiting great potential in the treatment of gastrointestinal diseases in an oral administration manner. Dove 2022-10-17 /pmc/articles/PMC9574266/ /pubmed/36262191 http://dx.doi.org/10.2147/IJN.S378073 Text en © 2022 Liang et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Liang, Xiao Wen, Kai Chen, Yingxuan Fang, Guangxu Yang, Shengcai Li, Quanshun Oral Administration of Therapeutic Enzyme Capsule for the Management of Inflammatory Bowel Disease |
title | Oral Administration of Therapeutic Enzyme Capsule for the Management of Inflammatory Bowel Disease |
title_full | Oral Administration of Therapeutic Enzyme Capsule for the Management of Inflammatory Bowel Disease |
title_fullStr | Oral Administration of Therapeutic Enzyme Capsule for the Management of Inflammatory Bowel Disease |
title_full_unstemmed | Oral Administration of Therapeutic Enzyme Capsule for the Management of Inflammatory Bowel Disease |
title_short | Oral Administration of Therapeutic Enzyme Capsule for the Management of Inflammatory Bowel Disease |
title_sort | oral administration of therapeutic enzyme capsule for the management of inflammatory bowel disease |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574266/ https://www.ncbi.nlm.nih.gov/pubmed/36262191 http://dx.doi.org/10.2147/IJN.S378073 |
work_keys_str_mv | AT liangxiao oraladministrationoftherapeuticenzymecapsuleforthemanagementofinflammatoryboweldisease AT wenkai oraladministrationoftherapeuticenzymecapsuleforthemanagementofinflammatoryboweldisease AT chenyingxuan oraladministrationoftherapeuticenzymecapsuleforthemanagementofinflammatoryboweldisease AT fangguangxu oraladministrationoftherapeuticenzymecapsuleforthemanagementofinflammatoryboweldisease AT yangshengcai oraladministrationoftherapeuticenzymecapsuleforthemanagementofinflammatoryboweldisease AT liquanshun oraladministrationoftherapeuticenzymecapsuleforthemanagementofinflammatoryboweldisease |