Cargando…

Non-structural carbohydrate dynamics and growth in tomato plants grown at fluctuating light and temperature

Fluctuations in light intensity and temperature lead to periods of asynchrony between carbon (C) supply by photosynthesis and C demand by the plant organs. Storage and remobilization of non-structural carbohydrates (NSC) are important processes that allow plants to buffer these fluctuations. We aime...

Descripción completa

Detalles Bibliográficos
Autores principales: Zepeda, Ana Cristina, Heuvelink, Ep, Marcelis, Leo F. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574331/
https://www.ncbi.nlm.nih.gov/pubmed/36262659
http://dx.doi.org/10.3389/fpls.2022.968881
_version_ 1784811079935721472
author Zepeda, Ana Cristina
Heuvelink, Ep
Marcelis, Leo F. M.
author_facet Zepeda, Ana Cristina
Heuvelink, Ep
Marcelis, Leo F. M.
author_sort Zepeda, Ana Cristina
collection PubMed
description Fluctuations in light intensity and temperature lead to periods of asynchrony between carbon (C) supply by photosynthesis and C demand by the plant organs. Storage and remobilization of non-structural carbohydrates (NSC) are important processes that allow plants to buffer these fluctuations. We aimed to test the hypothesis that C storage and remobilization can buffer the effects of temperature and light fluctuations on growth of tomato plants. Tomato plants were grown at temperature amplitudes of 3 or 10°C (deviation around the mean of 22°C) combined with integration periods (IP) of 2 or 10 days. Temperature and light were applied in Phase (high temperature simultaneously with high light intensity, (400 μmol m(–2) s(–1)), low temperature simultaneously with low light intensity (200 μmol m(–2) s(–1)) or in Antiphase (high temperature with low light intensity, low temperature with high light intensity). A control treatment with constant temperature (22°C) and a constant light intensity (300 μmol m(–2) s(–1)) was also applied. After 20 days all treatments had received the same temperature and light integral. Differences in final structural dry weight were relatively small, while NSC concentrations were highly dynamic and followed changes of light and temperature (a positive correlation with decreasing temperature and increasing light intensity). High temperature and low light intensity lead to depletion of the NSC pool, but NSC level never dropped below 8% of the plant weight and this fraction was not mobilizable. Our results suggest that growing plants under fluctuating conditions do not necessarily have detrimental effects on plant growth and may improve biomass production in plants. These findings highlight the importance in the NSC pool dynamics to buffer fluctuations of light and temperature on plant structural growth.
format Online
Article
Text
id pubmed-9574331
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-95743312022-10-18 Non-structural carbohydrate dynamics and growth in tomato plants grown at fluctuating light and temperature Zepeda, Ana Cristina Heuvelink, Ep Marcelis, Leo F. M. Front Plant Sci Plant Science Fluctuations in light intensity and temperature lead to periods of asynchrony between carbon (C) supply by photosynthesis and C demand by the plant organs. Storage and remobilization of non-structural carbohydrates (NSC) are important processes that allow plants to buffer these fluctuations. We aimed to test the hypothesis that C storage and remobilization can buffer the effects of temperature and light fluctuations on growth of tomato plants. Tomato plants were grown at temperature amplitudes of 3 or 10°C (deviation around the mean of 22°C) combined with integration periods (IP) of 2 or 10 days. Temperature and light were applied in Phase (high temperature simultaneously with high light intensity, (400 μmol m(–2) s(–1)), low temperature simultaneously with low light intensity (200 μmol m(–2) s(–1)) or in Antiphase (high temperature with low light intensity, low temperature with high light intensity). A control treatment with constant temperature (22°C) and a constant light intensity (300 μmol m(–2) s(–1)) was also applied. After 20 days all treatments had received the same temperature and light integral. Differences in final structural dry weight were relatively small, while NSC concentrations were highly dynamic and followed changes of light and temperature (a positive correlation with decreasing temperature and increasing light intensity). High temperature and low light intensity lead to depletion of the NSC pool, but NSC level never dropped below 8% of the plant weight and this fraction was not mobilizable. Our results suggest that growing plants under fluctuating conditions do not necessarily have detrimental effects on plant growth and may improve biomass production in plants. These findings highlight the importance in the NSC pool dynamics to buffer fluctuations of light and temperature on plant structural growth. Frontiers Media S.A. 2022-10-03 /pmc/articles/PMC9574331/ /pubmed/36262659 http://dx.doi.org/10.3389/fpls.2022.968881 Text en Copyright © 2022 Zepeda, Heuvelink and Marcelis. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Zepeda, Ana Cristina
Heuvelink, Ep
Marcelis, Leo F. M.
Non-structural carbohydrate dynamics and growth in tomato plants grown at fluctuating light and temperature
title Non-structural carbohydrate dynamics and growth in tomato plants grown at fluctuating light and temperature
title_full Non-structural carbohydrate dynamics and growth in tomato plants grown at fluctuating light and temperature
title_fullStr Non-structural carbohydrate dynamics and growth in tomato plants grown at fluctuating light and temperature
title_full_unstemmed Non-structural carbohydrate dynamics and growth in tomato plants grown at fluctuating light and temperature
title_short Non-structural carbohydrate dynamics and growth in tomato plants grown at fluctuating light and temperature
title_sort non-structural carbohydrate dynamics and growth in tomato plants grown at fluctuating light and temperature
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574331/
https://www.ncbi.nlm.nih.gov/pubmed/36262659
http://dx.doi.org/10.3389/fpls.2022.968881
work_keys_str_mv AT zepedaanacristina nonstructuralcarbohydratedynamicsandgrowthintomatoplantsgrownatfluctuatinglightandtemperature
AT heuvelinkep nonstructuralcarbohydratedynamicsandgrowthintomatoplantsgrownatfluctuatinglightandtemperature
AT marcelisleofm nonstructuralcarbohydratedynamicsandgrowthintomatoplantsgrownatfluctuatinglightandtemperature