Cargando…
Attention induction for a CT volume classification of COVID-19
PURPOSE: This study proposes a method to draw attention toward the specific radiological findings of coronavirus disease 2019 (COVID-19) in CT images, such as bilaterality of ground glass opacity (GGO) and/or consolidation, in order to improve the classification accuracy of input CT images. METHODS:...
Autores principales: | Takateyama, Yusuke, Haruishi, Takahito, Hashimoto, Masahiro, Otake, Yoshito, Akashi, Toshiaki, Shimizu, Akinobu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574825/ https://www.ncbi.nlm.nih.gov/pubmed/36251150 http://dx.doi.org/10.1007/s11548-022-02769-y |
Ejemplares similares
-
Classification and visual explanation for COVID-19 pneumonia from CT images using triple learning
por: Kato, Sota, et al.
Publicado: (2022) -
Prognostic value of metabolic tumor volume of pretreatment (18)F-FAMT PET/CT in non-small cell lung Cancer
por: Kumasaka, Soma, et al.
Publicado: (2018) -
Radiation Exposure from CT Examinations in Japan
por: Tsushima, Yoshito, et al.
Publicado: (2010) -
Iodine concentration calculated by dual-energy computed tomography (DECT) as a functional parameter to evaluate thyroid metabolism in patients with hyperthyroidism
por: Binh, Duong Duc, et al.
Publicado: (2017) -
Optimization of pneumonia CT classification model using RepVGG and spatial attention features
por: Zhang, Qinyi, et al.
Publicado: (2023)