Cargando…

Use of animal models to understand titin physiology and pathology

In recent years, increasing attention has been paid to titin (TTN) and its mutations. Heterozygous TTN truncating variants (TTNtv) increase the risk of a cardiomyopathy. At the same time, TTNtv and few missense variants have been identified in patients with mainly recessive skeletal muscle diseases....

Descripción completa

Detalles Bibliográficos
Autores principales: Marcello, Matteo, Cetrangolo, Viviana, Savarese, Marco, Udd, Bjarne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575118/
https://www.ncbi.nlm.nih.gov/pubmed/36065969
http://dx.doi.org/10.1111/jcmm.17533
Descripción
Sumario:In recent years, increasing attention has been paid to titin (TTN) and its mutations. Heterozygous TTN truncating variants (TTNtv) increase the risk of a cardiomyopathy. At the same time, TTNtv and few missense variants have been identified in patients with mainly recessive skeletal muscle diseases. The pathogenic mechanisms underlying titin‐related diseases are still partly unknown. Similarly, the titin mechanical and functional role in the muscle contraction are far from being exhaustively clarified. In the last few years, several animal models carrying variants in the titin gene have been developed and characterized to study the structural and mechanical properties of specific titin domains or to mimic patients' mutations. This review describes the main animal models so far characterized, including eight mice models and three fish models (Medaka and Zebrafish) and discusses the useful insights provided by a thorough characterization of the cell‐, tissue‐ and organism‐phenotypes in these models.