Cargando…

Reduced-Scaling Double Hybrid Density Functional Theory with Rapid Basis Set Convergence through Localized Pair Natural Orbital F12

[Image: see text] Following earlier work [Mehta, N.; Martin, J. M. L. J. Chem. Theory Comput.2022, 10.1021/acs.jctc.2c00426] that showed how the slow basis set convergence of the double hybrid density functional theory can be obviated by the use of F12 explicit correlation in the GLPT2 step (second...

Descripción completa

Detalles Bibliográficos
Autores principales: Mehta, Nisha, Martin, Jan M. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575149/
https://www.ncbi.nlm.nih.gov/pubmed/36178852
http://dx.doi.org/10.1021/acs.jpclett.2c02620
Descripción
Sumario:[Image: see text] Following earlier work [Mehta, N.; Martin, J. M. L. J. Chem. Theory Comput.2022, 10.1021/acs.jctc.2c00426] that showed how the slow basis set convergence of the double hybrid density functional theory can be obviated by the use of F12 explicit correlation in the GLPT2 step (second order Görling-Levy perturbation theory), we demonstrate here for the very large and chemically diverse GMTKN55 benchmark suite that the CPU time scaling of this step can be reduced (asymptotically linearized) using the localized pair natural orbital (PNO-L) approximation at negligible cost in accuracy.