Cargando…
Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information
BACKGROUND: Cell-cell interactions are important for information exchange between different cells, which are the fundamental basis of many biological processes. Recent advances in single-cell RNA sequencing (scRNA-seq) enable the characterization of cell-cell interactions using computational methods...
Autores principales: | Liu, Zhaoyang, Sun, Dongqing, Wang, Chenfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575221/ https://www.ncbi.nlm.nih.gov/pubmed/36253792 http://dx.doi.org/10.1186/s13059-022-02783-y |
Ejemplares similares
-
STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing
por: Sun, Dongqing, et al.
Publicado: (2022) -
Integration of single-cell RNA sequencing and spatial transcriptomics to reveal the glioblastoma heterogeneity
por: Perdyan, Adrian, et al.
Publicado: (2023) -
Comprehensive evaluation of noise reduction methods for single-cell RNA sequencing data
por: Chu, Shih-Kai, et al.
Publicado: (2022) -
TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment
por: Han, Ya, et al.
Publicado: (2022) -
Evaluation of single-cell classifiers for single-cell RNA sequencing data sets
por: Zhao, Xinlei, et al.
Publicado: (2019)