Cargando…
iDNA-ABF: multi-scale deep biological language learning model for the interpretable prediction of DNA methylations
In this study, we propose iDNA-ABF, a multi-scale deep biological language learning model that enables the interpretable prediction of DNA methylations based on genomic sequences only. Benchmarking comparisons show that our iDNA-ABF outperforms state-of-the-art methods for different methylation pred...
Autores principales: | Jin, Junru, Yu, Yingying, Wang, Ruheng, Zeng, Xin, Pang, Chao, Jiang, Yi, Li, Zhongshen, Dai, Yutong, Su, Ran, Zou, Quan, Nakai, Kenta, Wei, Leyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575223/ https://www.ncbi.nlm.nih.gov/pubmed/36253864 http://dx.doi.org/10.1186/s13059-022-02780-1 |
Ejemplares similares
-
DeepBIO: an automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis
por: Wang, Ruheng, et al.
Publicado: (2023) -
Explainable Deep Hypergraph Learning Modeling the Peptide Secondary Structure Prediction
por: Jiang, Yi, et al.
Publicado: (2023) -
An improved method for intracellular DNA (iDNA) recovery from terrestrial environments
por: Medina Caro, Diego, et al.
Publicado: (2023) -
Ideating iDNA: Lessons and limitations from leeches in legacy collections
por: Siddall, Mark E., et al.
Publicado: (2019) -
iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model
por: Lin, Wei-Zhong, et al.
Publicado: (2011)