Cargando…
Scalable training of graph convolutional neural networks for fast and accurate predictions of HOMO-LUMO gap in molecules
Graph Convolutional Neural Network (GCNN) is a popular class of deep learning (DL) models in material science to predict material properties from the graph representation of molecular structures. Training an accurate and comprehensive GCNN surrogate for molecular design requires large-scale graph da...
Autores principales: | Choi, Jong Youl, Zhang, Pei, Mehta, Kshitij, Blanchard, Andrew, Lupo Pasini, Massimiliano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575242/ https://www.ncbi.nlm.nih.gov/pubmed/36253845 http://dx.doi.org/10.1186/s13321-022-00652-1 |
Ejemplares similares
-
Clarifying the Adsorption of Triphenylamine on Au(111):
Filling the HOMO–LUMO Gap
por: Zhang, Teng, et al.
Publicado: (2022) -
Selected machine learning of HOMO–LUMO gaps with improved data-efficiency
por: Mazouin, Bernard, et al.
Publicado: (2022) -
Functional Group Effects on the HOMO–LUMO Gap of g-C(3)N(4)
por: Li, Hao, et al.
Publicado: (2018) -
Changes in the Electronic States of Low-Temperature
Solid n-Tetradecane: Decrease in the HOMO–LUMO
Gap
por: Morisawa, Yusuke, et al.
Publicado: (2017) -
Energy Component
Analysis for Electronically Excited
States of Molecules: Why the Lowest Excited State Is Not Always the
HOMO/LUMO Transition
por: Kimber, Patrick, et al.
Publicado: (2023)