Cargando…
Predicting potential miRNA-disease associations based on more reliable negative sample selection
BACKGROUND: Increasing biomedical studies have shown that the dysfunction of miRNAs is closely related with many human diseases. Identifying disease-associated miRNAs would contribute to the understanding of pathological mechanisms of diseases. Supervised learning-based computational methods have co...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575264/ https://www.ncbi.nlm.nih.gov/pubmed/36253735 http://dx.doi.org/10.1186/s12859-022-04978-3 |
Sumario: | BACKGROUND: Increasing biomedical studies have shown that the dysfunction of miRNAs is closely related with many human diseases. Identifying disease-associated miRNAs would contribute to the understanding of pathological mechanisms of diseases. Supervised learning-based computational methods have continuously been developed for miRNA-disease association predictions. Negative samples of experimentally-validated uncorrelated miRNA-disease pairs are required for these approaches, while they are not available due to lack of biomedical research interest. Existing methods mainly choose negative samples from the unlabelled ones randomly. Therefore, the selection of more reliable negative samples is of great importance for these methods to achieve satisfactory prediction results. RESULTS: In this study, we propose a computational method termed as KR-NSSM which integrates two semi-supervised algorithms to select more reliable negative samples for miRNA-disease association predictions. Our method uses a refined K-means algorithm for preliminary screening of likely negative and positive miRNA-disease samples. A Rocchio classification-based method is applied for further screening to receive more reliable negative and positive samples. We implement ablation tests in KR-NSSM and find that the combination of the two selection procedures would obtain more reliable negative samples for miRNA-disease association predictions. Comprehensive experiments based on fivefold cross-validations demonstrate improvements in prediction accuracy on six classic classifiers and five known miRNA-disease association prediction models when using negative samples chose by our method than by previous negative sample selection strategies. Moreover, 469 out of 1123 selected positive miRNA-disease associations by our method are confirmed by existing databases. CONCLUSIONS: Our experiments show that KR-NSSM can screen out more reliable negative samples from the unlabelled ones, which greatly improves the performance of supervised machine learning methods in miRNA-disease association predictions. We expect that KR-NSSM would be a useful tool in negative sample selection in biomedical research. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-022-04978-3. |
---|