Cargando…
Two novel outlier detection approaches based on unsupervised possibilistic and fuzzy clustering
Outliers are data points that significantly deviate from other data points in a data set because of different mechanisms or unusual processes. Outlier detection is one of the intensively studied research topics for identification of novelties, frauds, anomalies, deviations or exceptions in addition...
Autores principales: | Cebeci, Zeynel, Cebeci, Cagatay, Tahtali, Yalcin, Bayyurt, Lutfi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575855/ https://www.ncbi.nlm.nih.gov/pubmed/36262121 http://dx.doi.org/10.7717/peerj-cs.1060 |
Ejemplares similares
-
Unsupervised Approach Data Analysis Based on Fuzzy Possibilistic Clustering: Application to Medical Image MRI
por: El Harchaoui, Nour-Eddine, et al.
Publicado: (2013) -
Fuzzy K-Nearest Neighbor Based Dental Fluorosis Classification Using Multi-Prototype Unsupervised Possibilistic Fuzzy Clustering via Cuckoo Search Algorithm
por: Wongkhuenkaew, Ritipong, et al.
Publicado: (2023) -
String Grammar Unsupervised Possibilistic Fuzzy C-Medians for Gait Pattern Classification in Patients with Neurodegenerative Diseases
por: Klomsae, Atcharin, et al.
Publicado: (2018) -
Orthogonal outlier detection and dimension estimation for improved MDS embedding of biological datasets
por: Li, Wanxin, et al.
Publicado: (2023) -
A heuristic approach to possibilistic clustering algorithms and applications
por: Viattchenin, Dmitri A
Publicado: (2013)