Cargando…
Short-term power load forecasting based on gray relational analysis and support vector machine optimized by artificial bee colony algorithm
Short-term power load forecasting is essential in ensuring the safe operation of power systems and a prerequisite in building automated power systems. Short-term power load demonstrates substantial volatility because of the effect of various factors, such as temperature and weather conditions. Howev...
Autores principales: | Pang, Xinfu, Sun, Wei, Li, Haibo, Wang, Yibao, Luan, Changfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575856/ https://www.ncbi.nlm.nih.gov/pubmed/36262153 http://dx.doi.org/10.7717/peerj-cs.1108 |
Ejemplares similares
-
Artificial Neural Network Based Non-linear Transformation of High-Frequency Returns for Volatility Forecasting
por: Mücher, Christian
Publicado: (2022) -
A hybrid model of modal decomposition and gated recurrent units for short-term load forecasting
por: Wang, Chun-Hua, et al.
Publicado: (2023) -
The Applicability of Self-Play Algorithms to Trading and Forecasting Financial Markets
por: Posth, Jan-Alexander, et al.
Publicado: (2021) -
GDP Forecasting: Machine Learning, Linear or Autoregression?
por: Maccarrone, Giovanni, et al.
Publicado: (2021) -
On the Improvement of Default Forecast Through Textual Analysis
por: Cerchiello, Paola, et al.
Publicado: (2020)