Cargando…
Analyzing perceptions of a global event using CNN-LSTM deep learning approach: the case of Hajj 1442 (2021)
Hajj (pilgrimage) is a unique social and religious event in which many Muslims worldwide come to perform Hajj. More than two million people travel to Makkah, Saudi Arabia annually to perform various Hajj rituals for four to five days. However, given the recent outbreak of the coronavirus (COVID-19)...
Autor principal: | Shambour, Mohd Khaled |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575857/ https://www.ncbi.nlm.nih.gov/pubmed/36262123 http://dx.doi.org/10.7717/peerj-cs.1087 |
Ejemplares similares
-
Detecting racism and xenophobia using deep learning models on Twitter data: CNN, LSTM and BERT
por: Benítez-Andrades, José Alberto, et al.
Publicado: (2022) -
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model
por: Jiang, Xuchu, et al.
Publicado: (2022) -
A deep crowd density classification model for Hajj pilgrimage using fully convolutional neural network
por: Bhuiyan, Md Roman, et al.
Publicado: (2022) -
Software defect prediction using hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM)
por: Farid, Ahmed Bahaa, et al.
Publicado: (2021) -
A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework
por: Bari, Bifta Sama, et al.
Publicado: (2021)