Cargando…
Semantic relational machine learning model for sentiment analysis using cascade feature selection and heterogeneous classifier ensemble
The exponential rise in social media via microblogging sites like Twitter has sparked curiosity in sentiment analysis that exploits user feedback towards a targeted product or service. Considering its significance in business intelligence and decision-making, numerous efforts have been made in this...
Autores principales: | Yenkikar, Anuradha, Babu, C. Narendra, Hemanth, D. Jude |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575864/ https://www.ncbi.nlm.nih.gov/pubmed/36262147 http://dx.doi.org/10.7717/peerj-cs.1100 |
Ejemplares similares
-
Supervised machine learning models for depression sentiment analysis
por: Obagbuwa, Ibidun Christiana, et al.
Publicado: (2023) -
Stock price movement prediction based on Stocktwits investor sentiment using FinBERT and ensemble SVM
por: Liu, Jin-Xian, et al.
Publicado: (2023) -
Sentiment analysis of vegan related tweets using mutual information for feature selection
por: Shamoi, Elvina, et al.
Publicado: (2022) -
A systematic review on machine learning models for online learning and examination systems
por: Kaddoura, Sanaa, et al.
Publicado: (2022) -
Understanding heterogeneity of investor sentiment on social media: A structural topic modeling approach
por: Ji, Rongjiao, et al.
Publicado: (2022)