Cargando…
AlphaDDA: strategies for adjusting the playing strength of a fully trained AlphaZero system to a suitable human training partner
Artificial intelligence (AI) has achieved superhuman performance in board games such as Go, chess, and Othello (Reversi). In other words, the AI system surpasses the level of a strong human expert player in such games. In this context, it is difficult for a human player to enjoy playing the games wi...
Autor principal: | Fujita, Kazuhisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575865/ https://www.ncbi.nlm.nih.gov/pubmed/36262155 http://dx.doi.org/10.7717/peerj-cs.1123 |
Ejemplares similares
-
AlphaZe∗∗: AlphaZero-like baselines for imperfect information games are surprisingly strong
por: Blüml, Jannis, et al.
Publicado: (2023) -
Acquisition of chess knowledge in AlphaZero
por: McGrath, Thomas, et al.
Publicado: (2022) -
Zero-shot stance detection: Paradigms and challenges
por: Allaway, Emily, et al.
Publicado: (2023) -
Enabling Training of Neural Networks on Noisy Hardware
por: Gokmen, Tayfun
Publicado: (2021) -
Neural Network Training With Asymmetric Crosspoint Elements
por: Onen, Murat, et al.
Publicado: (2022)