Cargando…
Empirical mode decomposition using deep learning model for financial market forecasting
Financial market forecasting is an essential component of financial systems; however, predicting financial market trends is a challenging job due to noisy and non-stationary information. Deep learning is renowned for bringing out excellent abstract features from the huge volume of raw data without d...
Autores principales: | Jin, Zebin, Jin, Yixiao, Chen, Zhiyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575866/ https://www.ncbi.nlm.nih.gov/pubmed/36262133 http://dx.doi.org/10.7717/peerj-cs.1076 |
Ejemplares similares
-
A combined model for short-term wind speed forecasting based on empirical mode decomposition, feature selection, support vector regression and cross-validated lasso
por: Wang, Tao
Publicado: (2021) -
A hybrid forecasting model using LSTM and Prophet for energy consumption with decomposition of time series data
por: Arslan, Serdar
Publicado: (2022) -
A cooperative deep learning model for stock market prediction using deep autoencoder and sentiment analysis
por: Rekha, KS, et al.
Publicado: (2022) -
A new model for learning-based forecasting procedure by combining k-means clustering and time series forecasting algorithms
por: Hartomo, Kristoko Dwi, et al.
Publicado: (2021) -
Forecasting Bitcoin closing price series using linear regression and neural networks models
por: Uras, Nicola, et al.
Publicado: (2020)