Cargando…
Minimizing features while maintaining performance in data classification problems
High dimensional classification problems have gained increasing attention in machine learning, and feature selection has become essential in executing machine learning algorithms. In general, most feature selection methods compare the scores of several feature subsets and select the one that gives t...
Autores principales: | Matharaarachchi, Surani, Domaratzki, Mike, Muthukumarana, Saman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575878/ https://www.ncbi.nlm.nih.gov/pubmed/36262135 http://dx.doi.org/10.7717/peerj-cs.1081 |
Ejemplares similares
-
Adaptive sentiment analysis using multioutput classification: a performance comparison
por: Hariguna, Taqwa, et al.
Publicado: (2023) -
The accuracy of Random Forest performance can be improved by conducting a feature selection with a balancing strategy
por: Prasetiyowati, Maria Irmina, et al.
Publicado: (2022) -
A selective approach to stemming for minimizing the risk of failure in information retrieval systems
por: Göksel, Gökhan, et al.
Publicado: (2023) -
A novel autoencoder approach to feature extraction with linear separability for high-dimensional data
por: Zheng, Jian, et al.
Publicado: (2022) -
Nearest labelset using double distances for multi-label classification
por: Gweon, Hyukjun, et al.
Publicado: (2019)