Cargando…
Android malware detection using hybrid ANFIS architecture with low computational cost convolutional layers
BACKGROUND: Android is the most widely used operating system all over the world. Due to its open nature, the Android operating system has become the target of malicious coders. Ensuring privacy and security is of great importance to Android users. METHODS: In this study, a hybrid architecture is pro...
Autores principales: | Atacak, İsmail, Kılıç, Kazım, Doğru, İbrahim Alper |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575934/ https://www.ncbi.nlm.nih.gov/pubmed/36262124 http://dx.doi.org/10.7717/peerj-cs.1092 |
Ejemplares similares
-
FG-Droid: Grouping based feature size reduction for Android malware detection
por: Arslan, Recep Sinan
Publicado: (2022) -
Malware detection using static analysis in Android: a review of FeCO (features, classification, and obfuscation)
por: Jusoh, Rosmalissa, et al.
Publicado: (2021) -
Data augmentation based malware detection using convolutional neural networks
por: Catak, Ferhat Ozgur, et al.
Publicado: (2021) -
Artificial intelligence-driven malware detection framework for internet of things environment
por: Alsubai, Shtwai, et al.
Publicado: (2023) -
A Kullback-Liebler divergence-based representation algorithm for malware detection
por: Aboaoja, Faitouri A., et al.
Publicado: (2023)