Cargando…
Deep learning-based computed tomography image segmentation and volume measurement of intracerebral hemorrhage
The study aims to enhance the accuracy and practicability of CT image segmentation and volume measurement of ICH by using deep learning technology. A dataset including the brain CT images and clinical data of 1,027 patients with spontaneous ICHs treated from January 2010 to December 2020 were retros...
Autores principales: | Peng, Qi, Chen, Xingcai, Zhang, Chao, Li, Wenyan, Liu, Jingjing, Shi, Tingxin, Wu, Yi, Feng, Hua, Nian, Yongjian, Hu, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575984/ https://www.ncbi.nlm.nih.gov/pubmed/36263364 http://dx.doi.org/10.3389/fnins.2022.965680 |
Ejemplares similares
-
Hematoma Ventricle Distance on Computed Tomography Predicts Poor Outcome in Intracerebral Hemorrhage
por: Deng, Lan, et al.
Publicado: (2020) -
Automatic segmentation of deep intracerebral electrodes in computed tomography scans
por: Arnulfo, Gabriele, et al.
Publicado: (2015) -
Improvements of the Tada formula in estimating the intracerebral hemorrhage volume based on computed tomography
por: Sha, Zhuang, et al.
Publicado: (2023) -
Artificial Intelligence Can Effectively Predict Early Hematoma Expansion of Intracerebral Hemorrhage Analyzing Noncontrast Computed Tomography Image
por: Teng, Linyang, et al.
Publicado: (2021) -
A Radiomics Nomogram for Classifying Hematoma Entities in Acute Spontaneous Intracerebral Hemorrhage on Non-contrast-Enhanced Computed Tomography
por: Wang, Jia, et al.
Publicado: (2022)